Ancestry of the Australian Termitivorous Numbat

Anja Zemann,1 Gennady Churakov,1 Stephen Donnellan,2 Frank Grützner,3 Fangqing Zhao,4,4 Jürgen Brosius,1 and Jürgen Schmitz*–1
1Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
2Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
3School of Molecular & Biomedical Science, University of Adelaide, Adelaide, Australia
4Center for Comparative Genomics and Bioinformatics, Pennsylvania State University

*Corresponding author: E-mail: journals.permissions@oup.com
Associate editor: Emma Teeling
All derived sequences have been deposited in the NCBI database (accession nos. KC619625–KC620125).

Abstract

The Australian numbat, Myrmecobius fasciatus, is the only marsupial that feeds almost exclusively on termites and that has a life following the diurnally restricted and dynamic geographical distribution of termites. The millions of years of this adaptation led to unique morphological and anatomical features, especially basicranial and dental characteristics, that make it difficult to identify a clear phylogenetic affiliation to other marsupials. From DNA sequence analyses, the family Myrmecobiidae is placed within the dasyuromorph marsupials, but the exact position varies from study to study, and support values are mostly rather modest. Here, we report the recovery and analysis of approximately 110,000 quasi-fossilized traces of mobile element insertions into the genome of a dasyurid marsupial (Tasmanian devil), 25 of which are phylogenetically informative for early dasyuromorph evolution. Fourteen of these ancient retroposon insertions are shared by the 16 Dasyuromorpha species analyzed, including the numbat, but are absent in the outgroups. An additional 11 other insertions are present in all Dasyuridae but are absent in the numbat. These findings place numbats as the sister group to all living Dasyuridae and show that the investigated Dasyuromorpha, including the Myrmecobiidae, constitutes a monophyletic group that is separated from Peramelemorpha, Notoryctemorpha, and other marsupials.

Key words: retroposon phylogenomics, Dasyuromorpha, Myrmecobiidae, Dasyuridae, numbat.
marsupials, including the ancient mitochondrial DNA of the Tasmanian tiger, revealed additional significant support for Dasyuridae and Dasyuromorpha (Miller et al. 2009).

As retroposon insertion patterns avoid some of the pitfalls inherent in sequence-based data (Schmitz et al. 2001; Churakov et al. 2009), we sought to test these phylogenetic signals with evidence from a totally different, sequence-independent, type of analysis. In this study, we employed molecular “fossils” that are present in the genomes of all mammals and are passed on from lineage to lineage up to the contemporary species. Such ancient molecular relics arise via transcription and retroposition of genomic sequences and remain recognizable in genomes for hundreds of millions of years. Thus, specific retroposons established in the genome of a common ancestor and subsequently passed on to descendant species leave reliable indicators of their common origin and hence constitute a strong phylogenetic signature. Ancient retroposons can be retrieved in present-day genomes by a combination of bioinformatic analysis, polymerase chain reaction (PCR), and sequencing. We used these unique insertion signatures successfully to reconstruct the complete order-level phylogeny of marsupials (Nilsson et al. 2010), mammals (Kriegs et al. 2006; Warren et al. 2008), and birds (Suh et al. 2011). In our marsupial study, four independent, shared retroposon insertions provided significant evidence confirming the single common origin of the four Australian marsupial orders Dasyuromorpha, Diprotodontia, Notoryctemorpha, and Peramelemorpha.

Results and Discussion

Here, we searched for potential phylogenetically informative retroposons from early Dasyuromorpha using the genomic sequence information of the Tasmanian devil. To access suitable relevant elements active during early dasyuromorph evolution, we first conducted a Transposition in Transposition (TnT) analysis (Churakov et al. 2010), comparing the Tasmanian devil to wallaby and opossum, based on the fact that young active elements jump into old inactive elements but not vice versa. Such directionally nested retroposons contain complex information about the historical succession of elements, suitable data for finding the ones active at a certain ancient divergence. For these phylogenetic applications, we focused on Short INterspersed Elements (SINEs) because they are frequent and their restricted size facilitates easy amplification and sequencing of the corresponding loci. Analysis of the multidimensional direction of nested insertions showed that WSINE1 (Wallaby Long INterspersed Element [LINE1]-mobilized SINE) and WALLSI (Wallaby retroposon-like transposable element-mobilized SINE) elements were especially active at the branch leading to the Tasmanian devil (fig. 1). From approximately 110,000 analyzed genomic retroposon insertion loci (41,229 WALLSI1/2 loci and 69,008 WSINE1 loci) active during a relatively narrow phylogenetic window early in dasyuromorph evolution, we selected the 161 most conserved loci (13 WALLSI1/2 loci and 148 WSINE1 loci) for comparative PCR amplification and/or in silico sequence analysis in 16 representative Dasyuromorpha species plus eight nondasyuromorph outgroups species (fig. 2). On the basis of the gel patterns from those that were amplifiable in all species and phylogenetically informative, we experimentally amplified 500 loci and analyzed 573 sequences from 24 loci in the species in figure 2 to verify the orthologous presence or absence of 25 diagnostic phylogenetic markers of the early dasyuromorph diversification. Fourteen of these are present in all 16 Dasyuromorpha species including the numbat and are absent in other marsupials; a further 11 markers are present in all Dasyuridae but are absent in the numbat (fig. 2). This significant number of unique rare genomic changes enables us to assign the numbats as the sister group to all living Dasyuridae. Together, Dasyuridae and numbats build a monophyletic group that is clearly separated from Peramelemorpha and Notoryctemorpha, their next natural sister groups.

These data resolve previously controversial or weak reconstructions (Krajewski et al. 1997, 2000) and confirm the findings of the nuclear sequence study by Meredith et al. (2009) and the position of the numbat in the study of mitochondrial genomes (Miller et al. 2009) with sequence-independent evidence. The present data set will be especially suitable for testing the phylogenetic position of the extinct marsupial wolf; whether the thylacine split from the dasyurids before or after Myrmecobius diverged from the dasyuromorph lineage can be determined by examining the presence/absence patterns of these diagnostic retroposon loci in the thylacine. However, current biological material and available genomic sequence information of the extinct thylacine are not suitable for reconstructing the large diagnostic retroposon loci (>800 nt), and ancient DNA analyses are restricted to small nuclear amplificates (usually much smaller than 200 nucleotides, Austin J, personal communication).

The uniqueness of Myrmecobius, manifested not only in their exclusive eating habits but also in their isolated phylogenetic position distinct from dasyurids, is now substantiated with a significant number of phylogenetically informative markers supporting its inclusion in Dasyuromorpha (14 SINE markers) and its exclusion from Dasyuridae (11 SINE markers) (fig. 2). Intensive effort to protect these animals is now the next and important step to retain a unique species along with the broad diversity of marsupials.

Materials and Methods

Marsupial Material

All necessary samples for experimental PCR amplification were provided by the South Australian Museum in Adelaide (ABTC voucher number), Australia, or the DNA-Zoo collection of Professor Harald Jockusch (HJ).

Diprotodontia: Trichosurus vulpecula (Tvu-HJ).
Notoryctemorpha: Notoryctes typhlops (Nty-ABTC27520).
Peramelemorpha: Perameles bougainvillei (Pbo-ABTC10622).
Echymipera rufescens (Eru-ABTC48922), Isoodon obesulus (Isb-ABTC3719), and Macrotis lagotis (Mla-ABTC27581).
Dasyuromorpha: Myrmecobius fasciatus (Mfa-ABTC104467), Smilacinus macroura (Sma-ABTC00539), Planigale gelesi (Pge-ABTC00545), Antechinus stuartii (Ast-ABTC01044), Murexia longicauda (Mlo-ABTC07563), Phascogale...
Fig. 1. TinT analysis of opossum (*Monodelphis domestica*), wallaby (*Macropus eugenii*), and Tasmanian devil (*Sarcophilus harrisii*) SINEs. Ovals represent SINE TinTs retroposed by LINE3 (L3), LINE2 (L2), LINE1 (L1), and retroposon-like transposable elements (RTE). The 50% probability of the activity distribution is shown by ovals and the 90% probability of activity distribution by horizontal lines. The relative time axes are shown at the bottom. Shared marsupial retroposon activities are shown at the lower part of the figure. All abbreviations of SINEs are taken from the giridatabase (http://www.girinst.org/ version from 20 September 2011).
Fig. 2. Presence/absence patterns of retroposon insertions. In addition to the information from the three available genomes of *Monodelphis*, *Macropus*, and *Sarcophilus*, a total of 24 loci were amplified by PCR from the remaining 21 species and examined for the presence (+) or absence (−) of the 25 diagnostic retroposon insertions (markers 7 and 20 are from the same locus). A (?) indicates the failure of amplification and (d) a deletion of the insertion locus. The marker numbers at the top correspond to those of the primers in supplementary table S1, Supplementary Material online. Fourteen markers support the monophyly of Dasyuromophia and an additional 11 markers the monophyly of the investigated Dasyuridae.
tapoatafa (Pta-ABTC27600), Myoictis leucura (Mle-ABTC45347), Dasyurides byrnei (Dby-ABTC07555), Dasyurus cristicauda (Dcr-ABTC37971), Pseudachisma macdonnellensis (Pma-ABTC91679), Dasykaluta rosomandae (Dro-ABTC07549), Parantechinus apicalis (Pap-ABTC07518), P. bilarni (Pbi-ABTC29664), Phascolosorex dorsalis (Pdo-ABTC42508), and D. geoffroii (Dge-ABTC07519).

Additional genome sequences: Monodelphis domestica (http://hgdownload.cse.ucsc.edu/downloads.html#oposum), Macropus eugenii (http://hgdownload.cse.ucsc.edu/downloads.html#wallaby), and Sarcophilus harrisii (http://hgdownload.cse.ucsc.edu/downloads.html#tasmanian_devil).

TinT Analysis

To derive the relative periods of activity for the different marsupial SINE elements, we performed complete genome repeat masking using a local version of the RepeatMasker (http://www.repeatmasker.org/RMDownload.html). We used the RepeatMasker library from the Genetic Information Research Institute (giri; http://www.girinst.org/version from 20 September 2011). The corresponding output files were the source for the TinT application (http://www.compgen.uni-muenster.de/tools; Churakov et al. 2010) with default parameters for SINES. Marsupial-specific SINEs were selected to calculate the TinT graphs shown in figure 1.

Screening for Potential Phylogenetically Informative WSINE1 and WALLSI1/2

We extracted more than 69,000 WSINE1 and 41,000 WALLSI1/2 loci from the Tasmanian devil plus 700 nt of flanking sequences for each locus. These sequences were projected (via Basic Local Alignment Search Tool search) against a compilation of exon–intron–exon units from opossum and wallaby. Only those loci exhibiting the presence of intronic WSINE1 or WALLSI1/2 insertions in the Tasmanian devil and their absence in opossum and wallaby were selected for further investigations. A total of 161 such loci (148 WSINE1, 6 WALLSI1, and 7 WALLSI2) with intron-embedded SINES were selected to generate highly conserved exonic PCR primers for PCR amplification and experimental detection of the presence/absence boundary in the listed marsupial species (see earlier). This search strategy corresponds to strategy II in Suh et al. (2011).

PCR Amplification and Sequencing of Diagnostic Loci

We followed standard protocols for PCR amplification, cloning, and sequencing of the selected genomic loci (Kriegs et al. 2006) using the PCR primers presented in supplementary table S1, Supplementary Material online. From approximately 110,000 computationally selected genomic loci, we selected 161 for PCR amplification and gel electrophoresis. After inspecting the gel images for diagnostic insertions exhibiting size changes of approximately 120–300 nt for Dasyuridae or Dasyuridae plus Myrmecobius, we sequenced 24 of these loci (locus 7 contains markers 7 and 20).

Supplementary Material

Supplementary table S1 is available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank Jón Baldur Hlíðberg for providing the marsupial paintings; Marsha Bundman for organizing the sample transfer from Australia to Germany; Webb Miller and Stephan Schuster from Pennsylvania State University for an early access to the Tasmanian devil genome; and Harald Jockusch for providing additional samples. This work was supported by the Deutsche Forschungsgemeinschaft (SCHM1469/3-1, SCHM1469/3-2).

References